Nano Conductive Ceramic Wedged Graphene Composites as Highly Efficient Metal Supports for Oxygen Reduction
نویسندگان
چکیده
A novel conductive ceramic/graphene nanocomposite is prepared to prohibit the re-stacking of reduced graphene oxide (RGO) by wedging zirconium diboride (ZrB2) nanoparticles (NPs) into multiple layer nanosheets using a simple solvothermal method. Surprisingly, the RGO/ZrB2 nanocomposite supported Pt NPs shows very excellent catalytic activity. Its electrochemical surface area (ECSA) is up to 148 m(2)g(-1) (very approaches the geometry surface area of 155 m(2)g(-1)), much greater than that of the previous report (usually less than 100 m(2)g(-1)). The mass activity is as high as 16.8 A/g(-1), which is almost 2 times and 5 times that of Pt/RGO (8.6 A/g(-1)) and Pt/C (3.2 A/g(-1)), respectively, as benchmarks. Moreover, after 4000 cycles the catalyst shows only 61% of ECSA loss, meaning a predominantly electrochemical stability. The remarkably improved electrochemical properties with much high Pt utilization of the new catalyst show a promising application in low temperature fuel cells and broader fields.
منابع مشابه
Performance comparison of graphene and graphene oxide-supported palladium nanoparticles as a highly efficient catalyst in oxygen reduction
In this work, the performance of graphene nanosheets (GNs) and graphene oxide (GO) nanosheets, as a support for palladium nanoparticles (PdNPs) toward oxygen reduction reaction (ORR), was studied. The graphene nanosheets were functionalized by a new and simple method. The PdNPs were synthesized on a glassy carbon electrode (GCE) modified with GNs or GO via a potentiostatic method; without using...
متن کاملPreparation of Nitrogen-Doped Graphene By Solvothermal Process as Supporting Material for Fuel Cell Catalysts
Development of efficient electrocatalysts for oxygen reduction reaction (ORR) is one of the most important issues for optimizing the performance of fuel cells and metal-air batteries. The introduction of nitrogen into carbon nanostructures has created new pathways for the development of non-precious electrocatalysts in fuel cells. In this work, nitrogen-doped graphene (NG) was synthesized by a ...
متن کاملElectrodeposition of platinum nanoparticles on reduced graphene oxide as an efficient catalyst for oxygen reduction reaction
Reduced graphene oxide film was synthesized on a glassy carbon electrode by electro reduction of graphene oxide powders in aqueous solution. Then platinum nano particles were deposited on reduced graphene oxide film that was deposited on the glassy carbon electrode via electro reduction of platinum salt. The Physical morphology of the platinum on reduced graphene oxide film was evaluated by sca...
متن کاملMicro-wave synthesis of co-doped transition metal oxides anchored on reduced graphene oxide and their implementation as catalysts for water oxidation
Artificial photosynthesis is a very attractive and a desirable way to solve the rising energy demand. In order to harvest energy directly from sunlight catalyst for oxygen reduction and evolution reaction are at the core of key renewable-energy technologies including fuel cells and water splitting. Herein, tungsten oxide-reduced graphene oxide (WO3-rGO), cobalt oxidereduced graphene oxide (Co3O...
متن کاملNitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells.
Nitrogen-doped graphene (N-graphene) was synthesized by chemical vapor deposition of methane in the presence of ammonia. The resultant N-graphene was demonstrated to act as a metal-free electrode with a much better electrocatalytic activity, long-term operation stability, and tolerance to crossover effect than platinum for oxygen reduction via a four-electron pathway in alkaline fuel cells. To ...
متن کامل